
Creating Effective Security with
Simulation Technology

Deployments

www.windriver.com

and Secure
Cybersecurity

2 | White Paper

EXECUTIVE SUMMARY

Cybersecurity and secure software deployment are issues that cut across multiple sectors

— aerospace, defense, energy, critical infrastructure, industrial automation, medical devices,

telecommunications, and more. What these disparate sectors have in common is that a

malicious, network-borne intrusion can cause untold damage, whether financial or physical,

and even threaten human safety. Fortunately, there are security-strengthening techniques

and solutions for cybersecurity research that can apply in all of these areas. This paper

explains why creating and testing security solutions is more effectively performed using

virtual hardware and system simulation technology, rather than using the live systems that

are being subjected to attacks.

CYBERSECURITY AND SECURE DEPLOYMENTS

TABLE OF CONTENTS

Executive Summary. 2
The Growing Threat . 3
Cyberdefense: Deconstructing Attacks . 3
Investigating Attacks and Developing Defenses in a Virtual Environment 3

 Undetectable Analysis . 4

 Studying Attacks: Checkpoints and Reverse Execution . 4

 Fault Injection . 4

 Full Inspection . 4

 Observing Future Behavior with Hypersimulation . 5

 No Source Code Required . 5
Secure Deployment . 5
Solving the Challenge of Scale . 5
Instant Replication of Test Assets . 5
Automating the Impossible . 6
Conclusion . 6

3 | White Paper

THE GROWING THREAT

Sophisticated cyberattacks are proliferating globally. Today, with

the expansion of the Internet of Things (IoT) and device connectivity,

cyberattack targets extend beyond defense and IT to critical

infrastructure, aerospace, automotive, healthcare, heavy industry,

transportation, and communications — virtually any segment in

which there is digital information to steal or misuse, or where there

is potential for operational disruption or damage.

Protecting critical systems from network-borne threats and

preventing the deployment of infected systems are priorities for

both government and industry. Technologies are available today

that can give security engineers a considerable advantage in

combatting threats. First, though, let’s review the current model for

cybersecurity research and development.

CYBERDEFENSE: DECONSTRUCTING ATTACKS

Cyberdefense refers to the effort to find ways to protect systems

against attacks, including analyzing how attacks happen, how they

work, how they play out over time, and their effects, as well as

developing countermeasures. Understanding the nature of attacks

and uncovering system vulnerabilities is critical in developing

effective defense mechanisms.

Defense against cyberattacks involves two primary activities:

• Defense deployment: Designing and deploying a coordinated set
of protection capabilities, configuring those capabilities to deliver
the required protections, verifying the defenses, and maintaining
the capabilities with their proper configurations.

• Forensics: Investigating how an attack happens, what the attack
intends to accomplish, how the intruding element behaves,
and how the attack element works. Understanding the nature
of an attack in detail is key to developing appropriate cyber
countermeasures.

Developing, deploying, and testing effective cyberdefenses in

embedded devices is particularly challenging. Embedded devices

typically have resource constraints such as limited compute

power and processing capacity. They are often designed for a

single, unique purpose and employ less widely used busses and

interfaces. Setting up test labs to perform system-level cyber

testing on a representative set of devices at scale poses logistical

and cost challenges. It is also difficult to perform security tests on

live systems without “freezing” them entirely, which is not easily

accomplished since most systems need to be available at all times.

In addition, there is often no backup or redundant service available.

While it may be possible to shut down one hardware node and keep

the rest of the systems running, this may distort system behavior

and therefore not be indicative of how a security measure will

perform in a real attack scenario.

Testing cyberdefenses entails such techniques as fuzz testing, or

automated testing that injects invalid, unexpected, or random data

into a system to determine causes of system failure, and penetration

testing (or “pen test”), which involves attacking a system to uncover

security weaknesses, gain access to data, and take over or prevent

system functions, and then reporting findings to the system owner.

System operators may not even realize they are under attack.

Sophisticated attacks can develop over a long period of time, with

seemingly random events that in isolation seem harmless, but

collectively and over time can cause damage. The cyber chase

can be elusive — smart attacks may initially appear as random and

simple bugs. Cyberdefense teams must develop countermeasures

that are constantly active, that can detect and prevent attacks, and

that report attempted attacks to the security team.

Forensics is essentially a form of reverse engineering — investigators

work their way backward to identify the root cause of an attack.

But many sophisticated attacks are designed to prevent reverse

engineering — they burrow and hide below the OS level, in the BIOS

or firmware. These attacks may also delete traces of themselves

so there is little left for a forensics team to find once the attack

becomes exposed. In some cases, attacks can even detect whether

they are being analyzed, and change behavior to avoid discovery of

their true nature.

INVESTIGATING ATTACKS AND DEVELOPING DEFENSES
IN A VIRTUAL ENVIRONMENT

So how can you perform forensics if sophisticated malware is

designed to thwart attempts to investigate? How can you detect

and remedy vulnerabilities in critical infrastructure systems

composed of special-purpose embedded devices? How, in effect,

can you become smarter than intruders?

CYBERSECURITY AND SECURE DEPLOYMENTS

If expense were no object, you could build a so-called “cyber range,”

a completely isolated network of physical computers whose

sole purpose is testing cyber malware and countermeasures —

comparable to a golf range for swing practice or a firing range

for target practice. But this undertaking is usually very expensive,

requiring physical equipment — whether that’s an entire aircraft

cockpit, power plant equipment, or operating room instruments —

all wired together in a lab. The cost and physical nature of a cyber

range limit its capacity, which is often significantly lower than the

actual need. Furthermore, cyber ranges typically require special

skills associated with the unique characteristics and interfaces of a

particular system. Given these constraints and the resulting value,

a physical cyber range is neither sufficient nor cost-effective for

many organizations.

A less costly, more flexible, and more effective alternative is to use

virtual hardware and full system simulation technology. There are

two advantages to using virtual hardware and simulation:

1. Tests can be performed that are not possible on physical

hardware — for example, “tricking” malware into behaving in

certain ways, thereby exposing itself and making it impossible

to hide.

2. A virtual cyber range can be created, fully scaled out as much as

necessary, with all the variants needed to explore the systems,

and accessible by any engineer on the cyber research and

development team.

Wind River® Simics® exemplifies this type of technology. Simics is a

full system simulator; it simulates not only processors and boards,

but complete networked systems, on which the full software stack

runs unmodified, including the BIOS, firmware, operating system,

and software applications. Simics virtual platforms simulate target

hardware on which the software is intended to run.

Simics has proven to be an effective cybersecurity research and

development tool in the aerospace and defense sectors, and that

experience is easily transferable to other industries. Simics can be

used to support R&D in a variety of ways:

Undetectable Analysis

Software behaves the same way on a Simics virtual platform as it

does on physical hardware. All software, from the application level

down to the BIOS and firmware, can run unmodified on Simics.

Software build systems and development tools do not require

modification, and software is loaded in the same way as on physical

hardware. This means that from the software’s point of view, there

is no distinction between Simics and physical hardware. And in

contrast to a debug agent, Simics cannot be easily detected. This

means you can perform introspection and non-intrusive analysis

of a cyberattack, because the malware does not know that it’s

executing on Simics, making it difficult to hide.

Cyber forensics engineers have many of the same challenges

as BIOS developers — they have to understand exactly how low-

level software works. One of the primary applications of Simics is

in the development of BIOS and firmware code, where the virtual

hardware is developed in “high fidelity” to the physical target.

Studying Attacks: Checkpoints and Reverse Execution

Studying an attack likely involves developing a test case that

will demonstrate how the attack works. And when bad behavior

appears, researchers must be able to reproduce and analyze it.

This becomes a fairly simple matter with Simics checkpoints and

reverse execution features. With a system checkpoint, a complete

state of the system can be saved, from a single device to thousands

of devices, which can be replayed and shared among a team. With

reverse execution, cyber engineers can simply reverse time and

play the same execution over again, with complete determinism.

Moreover, these capabilities are also completely non-intrusive,

so the system cannot observe that it is being stopped, paused,

reversed, checkpointed, or restored.

Fault Injection

When the “hardware” is actually software, it can be altered as re-

quired — for example, hardware faults can be injected

programmatically into the system. With complete control over time,

engineers can change and modify the system on the fly to behave in

certain ways, or take different routes through execution paths. This

capability is very useful for both penetration and fuzz testing. Since

everything in Simics can be done by scripting, fault injection can be

automated and repeated as many times as needed.

Full Inspection

Complementary to ordinary black box analysis and testing, Simics

allows full white box testing and analysis. Simics enables complete

insight into the whole system and access to physical and virtual

CYBERSECURITY AND SECURE DEPLOYMENTS

4 | White Paper

memory. Anything on the target can be read without being noticed

or stopped, including MMU contents, registers, and disk content.

Every instruction, memory access, device access, and network

packet can be traced and logged. And malware has no idea it is

being observed.

Observing Future Behavior with Hypersimulation

Since malware is sometimes designed to cause long-term effects

after weeks, months, or even years, researchers need to investigate

what may happen to a system in the future, and how small errors

converge into larger problems over time. With a physical system,

there is only one way to do that — let the system run and monitor

the effect in real time. Simics can actually speed up time through

hypersimulation and project system behavior into the future.

No Source Code Required

When performing forensics, one may encounter situations where

only software binaries are available. This lack of source code could

potentially slow down or obstruct an investigation. But because

Simics runs unmodified software, portions of the system can be

available only as machine code and still be executed and analyzed

by leveraging the features of Simics. This is a unique characteristic

of Simics relative to other system simulation tools.

SECURE DEPLOYMENT

Developers need to be sure that new software and the products it

enables have not been compromised before being deployed — that

the system boots and operates securely initially, as well as after an

update.

The simple answer would be to test every part of the software

before deployment and at every update. The problem is that security

is difficult to scale correctly. The more complex the software and

computer system, the larger the test matrix, and the more difficult it

becomes to achieve the relevant test variation at production scale.

Not testing at full scale can put the production system at risk, and

this risk is exacerbated with the unrelenting demand for faster

deployments. Unfortunately the solution has often been to forego

complete test coverage and test only for the most critical use cases

on available platforms. Cyber attackers will find those places that

were not fully tested.

Fuzz testing is one method that can be applied to evaluate security

prior to deployment. For example, engineers can randomly vary

inputs to a device, introduce random communication, apply protocol

variations, perform range and boundary checks, or check for buffer

and register overflows. Randomized testing, however, requires

bandwidth, which again raises the issue of scalability.

SOLVING THE CHALLENGE OF SCALE

Security testing requires scalability. Compromises on test variation

and test coverage need to be eliminated. Solving this problem

requires two key capabilities: automation and parallelization. It is

critical to have as much automation as possible, not only to speed

up the testing process, but also to achieve repeatability and to be

able to report and log results automatically. Running tests in parallel

also helps save time — but parallelization is difficult. Not all types

of test software can be run in parallel; some is by nature serial. And

test parallelization requires the existence of several instances of the

same hardware, which is not always practical or affordable.

INSTANT REPLICATION OF TEST ASSETS

Simulation and virtual hardware solve both the automation and the

parallelization problems. When hardware is virtual, any amount of

target hardware can be instantiated, in any system configuration,

instantly. A virtual hardware lab can complement a physical hardware

lab, enabling engineers to create the target systems on demand.

An automated test system can also be programmed to create new

hardware instances and system setups (of both hardware and

software) automatically.

Simics can also significantly accelerate test speed through a

“snapshot and restore” feature, meaning it can run a system to a

specific point, create a snapshot, then run derivative test cases from

the snapshot without having to re-run the system to the snapshot

point each time.

Simics enables the instant and unlimited replication of test assets.

Parallel testing that requires multiple instances of hardware can

be run easily with Simics. Alternate system setups can be created

so that boards and software combinations are varied to specific

requirements, making it possible to complete the entire test

matrix, with any number or combinations of hardware variants, OS

configurations, communication protocols, and devices.

CYBERSECURITY AND SECURE DEPLOYMENTS

5 | White Paper

AUTOMATING THE IMPOSSIBLE

Since in Simics anything is scriptable, time can be controlled,

and the system can be altered in any way, it becomes possible

to automate what would not otherwise be possible. For example,

hardware can be forced to break repeatedly and deterministically.

Fuzz testing can be automated in new ways. Test programs can be

set up to automatically create any number of new boards, loaded

with pre-defined software stacks and able to execute from any

given point in any given state. Combined with the ability to change

software loads programmatically on a given set of virtual boards,

these capabilities allow varying test combinations to be completely

automated.

An important and often overlooked aspect of virtual hardware is

that it is more stable and reliable than physical hardware. Hardware

labs (with hardware lab equipment) tend to be susceptible to

failures and sensitive to disturbance. The larger the lab, the more

sensitive it can become as complexity increases. Checking results

from an automated test system after overnight testing, one may

find that tests were broken or interrupted, costing several hours or

days in delays. Engineers may also have to spend time analyzing

a reported problem to determine whether the issue lies with the

system being developed or the test system itself, which cuts into

productivity. With virtual hardware, running on stable servers,

the test system becomes more trustworthy, and all test teams,

regardless of locations, can save time that might otherwise be lost

when test automation is performed on physical hardware only.

CONCLUSION

Increasing automation, digital information, and interconnection

of critical systems all raise the complexity of developing and

maintaining secure systems. Developers of critical systems

need tools that can help them stay a step ahead of increasingly

sophisticated attackers. System simulation technology provides an

efficient and effective means of researching, analyzing, and testing

a wide variety of attack methods and security countermeasures in

a flexible and scalable environment, and in ways that would simply

not be feasible with physical systems. In a world that is ever more

dependent on the safe and reliable performance of interconnected

systems, simulation gives cyber professionals a way to gain the

upper hand.

Wind River is a global leader of software for the intelligent edge. Its technology has been powering the safest, most secure devices since 1981 and is in billions of products. Wind River is ac-
celerating the intelligent transformation of mission-critical edge systems that demand the highest levels of security, safety, and reliability.

© 2021 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc. Rev. 01/2021

CYBERSECURITY AND SECURE DEPLOYMENTS

