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EXECUTIVE SUMMARY 

Cybersecurity and secure software deployment are issues that cut across multiple sectors 

— aerospace, defense, energy, critical infrastructure, industrial automation, medical devices, 

telecommunications, and more. What these disparate sectors have in common is that a 

malicious, network-borne intrusion can cause untold damage, whether financial or physical, 

and even threaten human safety. Fortunately, there are security-strengthening techniques 

and solutions for cybersecurity research that can apply in all of these areas. This paper 

explains why creating and testing security solutions is more effectively performed using 

virtual hardware and system simulation technology, rather than using the live systems that 

are being subjected to attacks.
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THE GROWING THREAT 

Sophisticated cyberattacks are proliferating globally. Today, with 

the expansion of the Internet of Things (IoT) and device connectivity, 

cyberattack targets extend beyond defense and IT to critical 

infrastructure, aerospace, automotive, healthcare, heavy industry, 

transportation, and communications — virtually any segment in 

which there is digital information to steal or misuse, or where there 

is potential for operational disruption or damage.  

Protecting critical systems from network-borne threats and 

preventing the deployment of infected systems are priorities for 

both government and industry. Technologies are available today 

that can give security engineers a considerable advantage in 

combatting threats. First, though, let’s review the current model for 

cybersecurity research and development.

CYBERDEFENSE: DECONSTRUCTING ATTACKS 

Cyberdefense refers to the effort to find ways to protect systems 

against attacks, including analyzing how attacks happen, how they 

work, how they play out over time, and their effects, as well as 

developing countermeasures. Understanding the nature of attacks 

and uncovering system vulnerabilities is critical in developing 

effective defense mechanisms.

Defense against cyberattacks involves two primary activities:

• Defense deployment: Designing and deploying a coordinated set 
of protection capabilities, configuring those capabilities to deliver 
the required protections, verifying the defenses, and maintaining 
the capabilities with their proper configurations.

• Forensics: Investigating how an attack happens, what the attack 
intends to accomplish, how the intruding element behaves, 
and how the attack element works. Understanding the nature 
of an attack in detail is key to developing appropriate cyber 
countermeasures.

Developing, deploying, and testing effective cyberdefenses in 

embedded devices is particularly challenging. Embedded devices 

typically have resource constraints such as limited compute 

power and processing capacity. They are often designed for a 

single, unique purpose and employ less widely used busses and 

interfaces. Setting up test labs to perform system-level cyber 

testing on a representative set of devices at scale poses logistical 

and cost challenges. It is also difficult to perform security tests on 

live systems without “freezing” them entirely, which is not easily 

accomplished since most systems need to be available at all times. 

In addition, there is often no backup or redundant service available. 

While it may be possible to shut down one hardware node and keep 

the rest of the systems running, this may distort system behavior 

and therefore not be indicative of how a security measure will 

perform in a real attack scenario. 

Testing cyberdefenses entails such techniques as fuzz testing, or 

automated testing that injects invalid, unexpected, or random data 

into a system to determine causes of system failure, and penetration 

testing (or “pen test”), which involves attacking a system to uncover 

security weaknesses, gain access to data, and take over or prevent 

system functions, and then reporting findings to the system owner. 

System operators may not even realize they are under attack. 

Sophisticated attacks can develop over a long period of time, with 

seemingly random events that in isolation seem harmless, but 

collectively and over time can cause damage. The cyber chase 

can be elusive — smart attacks may initially appear as random and 

simple bugs. Cyberdefense teams must develop countermeasures 

that are constantly active, that can detect and prevent attacks, and 

that report attempted attacks to the security team.

Forensics is essentially a form of reverse engineering — investigators 

work their way backward to identify the root cause of an attack. 

But many sophisticated attacks are designed to prevent reverse 

engineering — they burrow and hide below the OS level, in the BIOS 

or firmware. These attacks may also delete traces of themselves 

so there is little left for a forensics team to find once the attack 

becomes exposed. In some cases, attacks can even detect whether 

they are being analyzed, and change behavior to avoid discovery of 

their true nature. 

INVESTIGATING ATTACKS AND DEVELOPING DEFENSES 
IN A VIRTUAL ENVIRONMENT 

So how can you perform forensics if sophisticated malware is 

designed to thwart attempts to investigate? How can you detect 

and remedy vulnerabilities in critical infrastructure systems 

composed of special-purpose embedded devices? How, in effect, 

can you become smarter than intruders? 
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If expense were no object, you could build a so-called “cyber range,” 

a completely isolated network of physical computers whose 

sole purpose is testing cyber malware and countermeasures — 

comparable to a golf range for swing practice or a firing range 

for target practice. But this undertaking is usually very expensive, 

requiring physical equipment — whether that’s an entire aircraft 

cockpit, power plant equipment, or operating room instruments — 

all wired together in a lab. The cost and physical nature of a cyber 

range limit its capacity, which is often significantly lower than the 

actual need. Furthermore, cyber ranges typically require special 

skills associated with the unique characteristics and interfaces of a 

particular system. Given these constraints and the resulting value, 

a physical cyber range is neither sufficient nor cost-effective for 

many organizations.

A less costly, more flexible, and more effective alternative is to use 

virtual hardware and full system simulation technology. There are 

two advantages to using virtual hardware and simulation: 

1. Tests can be performed that are not possible on physical 

hardware — for example, “tricking” malware into behaving in 

certain ways, thereby exposing itself and making it impossible 

to hide.

2. A virtual cyber range can be created, fully scaled out as much as 

necessary, with all the variants needed to explore the systems, 

and accessible by any engineer on the cyber research and 

development team.

Wind River® Simics® exemplifies this type of technology. Simics is a 

full system simulator; it simulates not only processors and boards, 

but complete networked systems, on which the full software stack 

runs unmodified, including the BIOS, firmware, operating system, 

and software applications. Simics virtual platforms simulate target 

hardware on which the software is intended to run. 

Simics has proven to be an effective cybersecurity research and 

development tool in the aerospace and defense sectors, and that 

experience is easily transferable to other industries. Simics can be 

used to support R&D in a variety of ways:

Undetectable Analysis 

Software behaves the same way on a Simics virtual platform as it 

does on physical hardware. All software, from the application level 

down to the BIOS and firmware, can run unmodified on Simics. 

Software build systems and development tools do not require 

modification, and software is loaded in the same way as on physical 

hardware. This means that from the software’s point of view, there 

is no distinction between Simics and physical hardware. And in 

contrast to a debug agent, Simics cannot be easily detected. This 

means you can perform introspection and non-intrusive analysis 

of a cyberattack, because the malware does not know that it’s 

executing on Simics, making it difficult to hide. 

Cyber forensics engineers have many of the same challenges 

as BIOS developers — they have to understand exactly how low-

level software works. One of the primary applications of Simics is 

in the development of BIOS and firmware code, where the virtual 

hardware is developed in “high fidelity” to the physical target.

Studying Attacks: Checkpoints and Reverse Execution 

Studying an attack likely involves developing a test case that 

will demonstrate how the attack works. And when bad behavior 

appears, researchers must be able to reproduce and analyze it. 

This becomes a fairly simple matter with Simics checkpoints and 

reverse execution features. With a system checkpoint, a complete 

state of the system can be saved, from a single device to thousands 

of devices, which can be replayed and shared among a team. With 

reverse execution, cyber engineers can simply reverse time and 

play the same execution over again, with complete determinism. 

Moreover, these capabilities are also completely non-intrusive, 

so the system cannot observe that it is being stopped, paused, 

reversed, checkpointed, or restored.

Fault Injection  

When the “hardware” is actually software, it can be altered as re- 

quired — for example, hardware faults can be injected 

programmatically into the system. With complete control over time, 

engineers can change and modify the system on the fly to behave in 

certain ways, or take different routes through execution paths. This 

capability is very useful for both penetration and fuzz testing. Since 

everything in Simics can be done by scripting, fault injection can be 

automated and repeated as many times as needed.

Full Inspection 

Complementary to ordinary black box analysis and testing, Simics 

allows full white box testing and analysis. Simics enables complete 

insight into the whole system and access to physical and virtual 
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memory. Anything on the target can be read without being noticed 

or stopped, including MMU contents, registers, and disk content. 

Every instruction, memory access, device access, and network 

packet can be traced and logged. And malware has no idea it is 

being observed.

Observing Future Behavior with Hypersimulation 

Since malware is sometimes designed to cause long-term effects 

after weeks, months, or even years, researchers need to investigate 

what may happen to a system in the future, and how small errors 

converge into larger problems over time. With a physical system, 

there is only one way to do that — let the system run and monitor 

the effect in real time. Simics can actually speed up time through 

hypersimulation and project system behavior into the future.

No Source Code Required  

When performing forensics, one may encounter situations where 

only software binaries are available. This lack of source code could 

potentially slow down or obstruct an investigation. But because 

Simics runs unmodified software, portions of the system can be 

available only as machine code and still be executed and analyzed 

by leveraging the features of Simics. This is a unique characteristic 

of Simics relative to other system simulation tools.

SECURE DEPLOYMENT 

Developers need to be sure that new software and the products it 

enables have not been compromised before being deployed — that 

the system boots and operates securely initially, as well as after an 

update. 

The simple answer would be to test every part of the software 

before deployment and at every update. The problem is that security 

is difficult to scale correctly. The more complex the software and 

computer system, the larger the test matrix, and the more difficult it 

becomes to achieve the relevant test variation at production scale. 

Not testing at full scale can put the production system at risk, and 

this risk is exacerbated with the unrelenting demand for faster 

deployments. Unfortunately the solution has often been to forego 

complete test coverage and test only for the most critical use cases 

on available platforms. Cyber attackers will find those places that 

were not fully tested.

Fuzz testing is one method that can be applied to evaluate security 

prior to deployment. For example, engineers can randomly vary 

inputs to a device, introduce random communication, apply protocol 

variations, perform range and boundary checks, or check for buffer 

and register overflows. Randomized testing, however, requires 

bandwidth, which again raises the issue of scalability.

SOLVING THE CHALLENGE OF SCALE 

Security testing requires scalability. Compromises on test variation 

and test coverage need to be eliminated. Solving this problem 

requires two key capabilities: automation and parallelization. It is 

critical to have as much automation as possible, not only to speed 

up the testing process, but also to achieve repeatability and to be 

able to report and log results automatically. Running tests in parallel 

also helps save time — but parallelization is difficult. Not all types 

of test software can be run in parallel; some is by nature serial. And 

test parallelization requires the existence of several instances of the 

same hardware, which is not always practical or affordable. 

INSTANT REPLICATION OF TEST ASSETS 

Simulation and virtual hardware solve both the automation and the 

parallelization problems. When hardware is virtual, any amount of 

target hardware can be instantiated, in any system configuration, 

instantly. A virtual hardware lab can complement a physical hardware 

lab, enabling engineers to create the target systems on demand. 

An automated test system can also be programmed to create new 

hardware instances and system setups (of both hardware and 

software) automatically. 

Simics can also significantly accelerate test speed through a 

“snapshot and restore” feature, meaning it can run a system to a 

specific point, create a snapshot, then run derivative test cases from 

the snapshot without having to re-run the system to the snapshot 

point each time.  

Simics enables the instant and unlimited replication of test assets. 

Parallel testing that requires multiple instances of hardware can 

be run easily with Simics. Alternate system setups can be created 

so that boards and software combinations are varied to specific 

requirements, making it possible to complete the entire test 

matrix, with any number or combinations of hardware variants, OS 

configurations, communication protocols, and devices.
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AUTOMATING THE IMPOSSIBLE 

Since in Simics anything is scriptable, time can be controlled, 

and the system can be altered in any way, it becomes possible 

to automate what would not otherwise be possible. For example, 

hardware can be forced to break repeatedly and deterministically. 

Fuzz testing can be automated in new ways. Test programs can be 

set up to automatically create any number of new boards, loaded 

with pre-defined software stacks and able to execute from any 

given point in any given state. Combined with the ability to change 

software loads programmatically on a given set of virtual boards, 

these capabilities allow varying test combinations to be completely 

automated.

An important and often overlooked aspect of virtual hardware is 

that it is more stable and reliable than physical hardware. Hardware 

labs (with hardware lab equipment) tend to be susceptible to 

failures and sensitive to disturbance. The larger the lab, the more 

sensitive it can become as complexity increases. Checking results 

from an automated test system after overnight testing, one may 

find that tests were broken or interrupted, costing several hours or 

days in delays. Engineers may also have to spend time analyzing 

a reported problem to determine whether the issue lies with the 

system being developed or the test system itself, which cuts into 

productivity. With virtual hardware, running on stable servers, 

the test system becomes more trustworthy, and all test teams, 

regardless of locations, can save time that might otherwise be lost 

when test automation is performed on physical hardware only.

CONCLUSION 

Increasing automation, digital information, and interconnection 

of critical systems all raise the complexity of developing and 

maintaining secure systems. Developers of critical systems 

need tools that can help them stay a step ahead of increasingly 

sophisticated attackers. System simulation technology provides an 

efficient and effective means of researching, analyzing, and testing 

a wide variety of attack methods and security countermeasures in 

a flexible and scalable environment, and in ways that would simply 

not be feasible with physical systems. In a world that is ever more 

dependent on the safe and reliable performance of interconnected 

systems, simulation gives cyber professionals a way to gain the 

upper hand. 
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