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EXECUTIVE SUMMARY

Adopting the practice of continuous integration (CI) can be difficult, especially 

when developing software for embedded systems. Practices such as DevOps 

and CI are designed to enable engineers to constantly improve and update 

their products, but these processes can break down without access to the 

target system, a way to collaborate with other teams and team members, and 

the ability to automate tests. This paper outlines how simulation can enable 

teams to more effectively manage their integration and test practices. 

Key points include:

• How a combination of actual hardware and simulation models can allow 

your testing to scale beyond what is possible with hardware alone

• Recommended strategies to increase effectiveness of simulated testing

• How simulation can automate testing for any kind of target

• How simulation can enable better collaboration and more thorough testing 

• Some problems encountered when using hardware alone, and how simu-

lation can overcome them
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INTRODUCTION

CI is an important component of a modern DevOps practice. While 

the details of CI differ depending on whom you ask, a key feature 

is that rather than waiting until the last minute to integrate all the 

many different pieces of code in a system, integration—and most 

importantly, integration testing—is performed as early as possible, 

as soon as code is ready to run. You cannot really adopt DevOps, or 

even Agile software development, fully unless you have automated 

builds, automated tests, and automated successive integration—

that is, continuous integration. Embedded software developers are 

actively embracing DevOps, but they are often blocked from doing so 

fully due to the issues inherent in working with embedded hardware. 

A properly implemented and employed CI system shortens the lead 

time from coding to deployed products and increases the overall 

quality of the code and the system being shipped. With CI, errors 

are found faster, which leads to lower cost for fixing the errors and 

lower risk of showstopper integration issues when it is time to ship 

the product. 

In CI, each piece of code that is added or changed should be tested 

as soon as possible and as quickly as possible, to make sure that 

feedback reaches the developers while the new code is still fresh in 

their minds. Ideally, tests should be run and results reported back to 

the developers within minutes. The most common technique is to 

build and test as part of the check-in cycle for all code, which puts 

access to test systems on the critical path for developers. 

Testing soon and testing quickly is logistically simple for IT 

applications, where any standard computer or cloud computing 

instance can be used for testing. However, for embedded systems 

and distributed systems, it can be a real issue to perform continuous 

integration and immediate, automated testing. The problem is 

that running code on an embedded system typically requires a 

particular type of board, or even multiple boards. If multiple boards 

are involved, they need to be connected in the correct way, and the 

connections between them configured appropriately. There is also 

a need for some kind of environment in which to test the system—

an embedded system rarely operates in isolation; it is, rather, a 

system that is deeply embedded in its environment and depends 

on having the environment in order to do anything useful. CI for 

embedded systems thus tends to be more difficult to achieve due 

to the dependency on particular hardware, and the dependence on 

external inputs and outputs (I/Os) and the hardware necessary to 

drive the I/Os. 

Using simulation for the embedded system and its environment 

offers a potential solution that allows for true automated testing 

and CI, even for embedded software developers. Wind River® 

Simics® helps achieve this by using high-speed virtual platform 

models of the embedded system along with models of networks 

and simulators for the physical environment that the embedded 

system interacts with. 

CONTINUOUS INTEGRATION AND SIMULATION

A CI setup is fundamentally an automatic test framework, where 

code is successively integrated into larger and larger subsystems. 

As shown in Figure 1, the CI setup typically consists of a number 

of CI loops, each loop including a larger and larger subset of the 

system—both hardware and software.

The CI system is typically started when code is checked in by 

developers. Since code needs to have some basic level of quality 

before being checked in, there is normally a separate pre-CI test phase 

where developers test their code manually or by using small-scale 

automatic tests to make sure the code is at least basically sound and 

Embedded software developers are actively 
embracing DevOps, but they are often blocked 
from doing so fully due to the issues inherent in 
working with embedded software.

Figure 1. Continuous integration loops
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probably won’t break the build. Once the code seems reasonably 

stable, it is submitted to the main automatic build system and sent 

into the CI system proper. The work of the CI system is to a large 

extent regression testing—making sure that the component that 

was changed or added does not break existing expected behaviors 

of the system. 

It is critical to perform testing at multiple levels of integration, since 

each level tends to catch different types of bugs. Just doing system-

level end-to-end testing on a completely integrated system will miss 

large classes of errors that are easy to find with more fine-grained 

tests. Running unit tests is necessary to ensure system-level quality, 

but it is not sufficient. Integration testing will reveal many types of 

issues that are not found in unit tests, and each level of integration 

will reveal its own set of bugs.

Each successive CI loop covers a larger scope and takes more time to 

run. The first-level loops should ideally complete in a few minutes, to 

provide very quick developer feedback. At the tail end of the process, 

the largest loops can run for days or even weeks. 

The largest loops are sometimes considered part of the CI process, 

and sometimes are handled by a specialized quality assurance or 

delivery team that makes sure the code truly meets the quality 

criteria needed to ship. If the code that comes out of the final CI 

loop is ready to ship, we enter the domain of continuous delivery 

(CD), which is the next step beyond CI. Simulation can be used for 

all but the last and largest test loops. In the end, you have to “test 

what you ship and ship what you test,” and that means you have to 

test the system on the hardware that will be shipping—but that is 

the last step before release, and most testing up to that point can 

be done using simulation. 

CI cannot necessarily be applied arbitrarily to any existing software 

stack; in most cases, the software architecture has had to be 

changed to facilitate CI and DevOps. A key requirement for success 

is that it be possible to build and integrate parts of a system, and 

that subsets of the entire system can be tested in isolation—that is, 

the system must be modular in order to enable CI. Additionally, unit 

tests and subsystem tests must be defined, if they do not already 

exist. Using simulation and making testing automated does not 

automatically mean that you have a CI system. 

HARDWARE-BASED CONTINUOUS INTEGRATION

The basic way to perform testing and CI for embedded systems is 

to use hardware. As shown in Figure 2, a hardware test setup often 

consists of a board under test, a master PC that loads software onto 

the board and runs it, and a test data PC equipped with interfaces 

such as serial, AFDX, ARINC 429, MIL-STD-1553, CAN, Ethernet, 

FlexRay, 802.15.4, and other specific buses and networks used to 

communicate with the real target board.  

To test the embedded software on the system under test, it is 

necessary to have input data to communicate to the target. That 

is the job of the data generator or world model PC in Figure 2. The 

input data can come from recordings of real-world inputs, from 

manually written files of input data, or from models that run in real 

time. For example, a satellite test bed would have a simulation of 

how the stars move as the satellite orbits the earth, and it would 

provide pictures of the sky as inputs to the star tracking system. 

While the data generator is shown as a PC in Figure 2, it can also 

be specialized test hardware, in particular for high-performance 

systems where the data volumes needed are huge and latency 

requirements are tight. It is not uncommon to have a whole rack of 

specialized computer boards connected to a hardware test system 

over a large number of special cables. Needless to say, such setups 

can quickly become very expensive and unwieldy—not to mention 

quite cumbersome to maintain over time.

The target provisioning and control PC is responsible for managing 

the target system, including loading software on it, resetting it, 

starting target software, and cleaning up between tests. The PCs 

directly connected to the target system are controlled by a test 

management system that often runs on a central server.  

Hardware test setups are necessary for doing tests on the hardware 

and are universally used for at least the final integration testing, and 

sometimes also earlier integration testing. But access to hardware 

test setups is typically limited, since there are not that many setups 

to go around. 
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Figure 2. Typical hardware lab test rig
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Another common problem is that the hardware test lab setups are 

so complicated that only a few engineers (or even just one) master 

it. This unintentional specialization, with each team only really 

knowing how to run a few types of tests, in turn leads to bottlenecks, 

long turnaround times, and inefficient communication. Such 

specialization runs counter to the whole Agile collaborative spirit, 

where flexibility, velocity, and quick feedback loops are essential. 

Furthermore, hardware test setups can be difficult to automate and 

configure quickly enough for small CI loops. The result is that in 

practice, hardware can be so difficult to set up, control, and fully 

automate that many companies have given up on using it for CI 

entirely. Instead, testing on hardware is done only quite late in the 

process using a mostly complete system—essentially going straight 

to classic big-bang waterfall integration rather than a gradual CI 

process. And with this practice comes the well-known effect that 

defects are expensive to fix, since they are found late in the process. 

To work around the inconvenience and lack of access to hardware, 

companies have tried various solutions. 

Unit testing can be performed on development boards using the 

same architecture as the target board, as long as tests do not 

depend on accessing application-specific hardware. Stubs can be 

used to imitate the rest of the systems. This solution gets around the 

need to have real target boards, but at the cost of not really running 

the final integrated software stack. Once it is time to do integration 

tests, the actual target hardware is needed. Development boards 

are also hardware resources and will be limited in availability too. 

Another common solution is to develop an API-based or shim-layer-

based simulator. In such a setup, the software is compiled to run 

on a Windows- or Linux-based PC, and the target hardware and 

operating system are represented by a set of API calls that can 

be used on both the target and the host. This solution provides 

an environment where application code can run, but it will not be 

compiled with the real target compiler, it will not be integrated in 

the same way that software is for the real system, and it will not 

run the real OS kernel. Such a setup offers a quick way to do initial 

testing on the development host, but it also tends to hide errors 

related to the real target behavior and build tools. In many cases, 

tests just cannot be run on this type of simulation, since they need 

a larger context than is available. Thus, API-based tests are most 

often used to test a few well-behaved applications, but extending 

them to the full system is very rare, and also quite complicated. 

They are most useful as quick pre-CI tests. API-based simulators 

also require the development organization to create and maintain 

an additional build variant as well as the simulation framework 

itself. This cost can be quite significant in practice, even if it seems 

small initially. 

Many companies evolve a hybrid of several of these approaches. 

One common hybrid is to combine a PC modeling the environment 

with a development board. Any differences between the 

development board and the target end-system are then addressed 

with software changes in the code or in a shim layer on the target. 

Sometimes the hybrid system can end up being more expensive 

than simply using the production hardware that was eliminated as 

a cost-saving measure.

Overall, hardware solutions have various issues that prevent 

companies from moving fully to a CI flow that is as smooth and 

efficient as that experienced by general IT companies. 

USING SIMULATION FOR CONTINUOUS INTEGRATION

To get around the problems caused by using hardware for CI, 

companies have turned to simulation based on Simics. Using 

simulation, testing can be performed using standard PCs and 

servers, reducing the reliance on hardware and expanding the access 

to hardware virtually. With simulation, the test setup shown above in 

Figure 2 would look like the one in Figure 3. The PCs servicing and 

controlling the target board are replaced with simulation modules, 

and the target board is replaced with a virtual platform.
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Another common problem is that the hardware 
test lab setups are so complicated that only a 
few engineers (or even just one) master it. This 
unintentional specialization, with each team only really 
knowing how to run a few types of tests, in turn leads 
to bottlenecks, long turnaround times, and inefficient 
communication. Such specialization runs counter to 
the Agile collaborative spirit, where flexibility, velocity, 
and quick feedback loops are essential.

Overall, hardware solutions have various issues 
that prevent companies from moving fully to a 
CI flow that is as smooth and efficient as that 
experienced by general IT companies.
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Compared to hardware, managing a simulated test system is much 

easier. Because the simulation is just software, it will not run out 

of control, hang, or become unresponsive due to a bad hardware 

configuration or total target software failure. The simulator 

program itself will always remain in control and allow runs to be 

started and stopped at will. It is also easier to manage multiple 

software programs than multiple hardware units. Where a physical 

test system will need to coordinate multiple pieces of hardware and 

software, as shown in Figure 2, a simulation-based setup has the 

much simpler task of coordinating a few software programs, as 

shown in Figure 3. 

With a simulation, the same physical hardware box—a generic PC 

or server or cloud instance—can be used to run tests for a wide 

variety of target systems. This provides much more flexibility than 

hardware labs, since one hardware system cannot be repurposed 

to test software build for another system. 

As shown in Figure 4, the simulator augments the availability of 

physical boards, removing the constraints that hardware availability 

places on both developers’ spontaneous testing and structured 

CI testing. With simulation, each user can have a system of any 

kind to run whenever they need it. It is also possible to temporarily 

increase the testing pool by borrowing computer resources from 

other groups within the same company, or even by renting time on 

a cloud computing service.

In contrast, with physical labs, hardware availability is almost 

always an issue. The number of physical systems available is 

limited, and time on them tightly controlled, forcing developers to 

limit testing or test when their time slot comes up rather than when 

their code is in good shape to be tested. It is also common to see 

test campaigns becoming longer and longer on hardware, as tests 

are added over time while the number of labs remains the same. 

The time from the point when a job is submitted for execution to 

the point when it is completed gets longer and longer, as it has to 

wait for a hardware unit to become available. With a simulation-

based setup, test latency is shorter, and thus it is possible to provide 

faster—and therefore better—feedback to the developers.  

Test latency is also reduced by the potential for more parallel testing, 

making it possible to run through a particular set of tests in shorter 

time than on hardware. We have seen users previously limited by 

hardware greatly increase their test coverage and frequency thanks 

to parallel testing; if you can run your test suites daily rather than 

weekly, errors will get found earlier, regressions will be caught 

more quickly, and fewer errors will make it out in the field, reducing 

development costs and increasing product quality.

When limited by hardware availability, real-world tests are often 

designed to fit into available testing resources rather than to detect 

problems. This is a necessity, as some testing is still infinitely better 

than no testing. But with virtually unlimited hardware availability, 

tests do not have to be scaled down or modified to match available 

hardware; instead, the virtual hardware can be set up to match 

the tests that need to be performed. This includes creating virtual 

setups that have no counterpart in the physical lab, as well as 

dynamically varying the hardware setup during a test. Thus, the 

attainable test matrix is expanded beyond what is possible with the 

physical labs. 

At the same time, the simulation setup does not have to correspond 

to the complete physical hardware system to be useful. Rather, the 

Figure 3. Simulation-based lab test rig
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most common way to enable CI using simulation is to design a set 

of configurations that are useful for particular classes of test cases, 

and that do not include the entirety of the system. If some piece of 

hardware is not actually being used, it can be skipped or replaced by 

a dummy in the model, reducing the work needed to build the model 

and the execution power needed to run it. Simulation setups must 

always be designed with the use cases in mind. The simulation 

setup scales with the tests to be performed. 

SIMICS VIRTUAL PLATFORMS 

The virtual platforms suitable for use in CI are fast functional 

transaction-level models such as Simics. A fast virtual platform such 

as Simics typically does not model the detailed implementation of 

the hardware, such as bus protocols, clocks, pipelines, and caches. 

In this way, Simics provides a simulation that runs fast enough to 

run real workloads and that can typically cover between 80% and 

95% of all software tests and issues. To cover the tests that depend 

on real-world timing and absolute performance, hardware will have 

to be used, which is expected and normal. There is a basic choice 

to be made between running a lot of software with a simplified 

timing model, and very little software with a high level of detail. In 

today’s systems, it is usually the case that more issues are found 

by running a lot of code rather than by cranking up the detail level.

A typical Simics target setup is shown in Figure 5. The target 

software running on the simulated hardware boards includes low-

level firmware and boot loaders, hypervisors, operating systems, 

drivers, middleware, and applications. To achieve this, Simics 

accurately models the aspects of the real system that are relevant 

for software, such as CPU instruction sets, device registers, memory 

maps, interrupts, and the functionality of the peripheral devices.  

You can run multiple boards inside a single simulation, along with 

the networks connecting them. It is also possible to connect the 

simulated computer boards (virtual platforms) to the outside world 

via networks or integrations with other simulators. Simics has 

proven to be fast enough to run even very large workloads, including 

thousands of target processors. 

Figure 5 also shows that Simics provides features such as 

configuration management, scripting, automated debugging, 

and analysis tools that help when constructing simulated CI and 

software development environments. When using Simics, the entire 

state of the simulated system can be saved to disk as a checkpoint 

for later restoration, which enables issue management workflows 

and optimizations for starting runs from a known good and reusable 

state, as illustrated in Figure 7.

In Figure 3 we see a simulation-internal connection between the 

data generator or world model and the system under test. With 

simulation, you could potentially do this in various simulation-

specific ways, but for most integration tests it is usually a good 

idea to connect the virtual platform running the control software 

to a simulation of the environment in the same way that they are 

connected in the real world. The recommended structure of such 

simulations is shown in Figure 6. There is a simulated control 

computer board featuring simulation of the hardware I/O ports, and 

running an integrated software stack including the device drivers 

for the I/O hardware. The modeled I/O devices connect to models 

of the sensors and actuators that are part of the system being 

designed. There are also cases where the simulation of the rest of 

the world is run on another virtual platform (one of the machines 

in Figure 5 would actually simulate the environment for the other).
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Figure 5. Simics simulation
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WORKFLOW OPTIMIZATION USING CHECKPOINTS 

Using Simics for virtual platform simulation makes it possible 

to optimize the test workflows, including new ways to provide 

feedback to the developers from test runs. Simics checkpoints 

capture the entire state of the simulated system to disk and allow 

the saved state to be instantly brought up in Simics on the same or a 

different machine, at any point in time and at any location. The first 

use of checkpoints is  to save intermediate points in the test flow, 

such as the point after a system has finished booting, or after the 

software to test has been loaded. Figure 7 shows a typical Simics-

based workflow where the system is first booted, then the booted 

state is saved and used as the starting point for loading software. 

Once software is loaded onto the system, another checkpoint is 

saved, and this checkpoint is used as the starting point for a series 

of tests. Since checkpoints should be handled as read-only items, 

it is possible to base many test runs off the same checkpoint. On 

a hardware system, each test would have to start by booting the 

system or cleaning it in some way to remove the effects of the 

test. In a simulator, each run can start from a known consistent 

and good state, with no pollution from other tests. By removing this 

overhead, checkpoints can save a lot of time when starting tests, as 

well as avoid spurious results by ensuring a consistent initial state 

across batches of tests.

Figure 7 also shows how checkpoints are used to manage issue 

reports from testing. In addition to the traditional information in an 

issue report (text describing what happened, collections of logs and 

serial port output, version and configuration data, etc.), checkpoints 

(containing a recording of all asynchronous inputs) can be used to 

provide the developer responsible for the code that broke the test 

with the precise hardware and software state at the time the issue 

hit. This ability removes the guesswork in understanding what the 

test did and how the software failed and is a tremendous boost for 

debugging efficiency. 

This type of efficient feedback loop from testing to development 

is especially important for CI, since the developer is expected to 

deal quickly with issues that are found, while being quite removed 

from the actual testing going on. In manual interactive testing, the 

distance is typically much smaller as the developer is doing the 

testing just as the code is being developed. Using checkpoints 

and automated issue generation brings down the time needed to 

get back to a developer and provides more information to make it 

easier to understand what happened. 

The checkpointing methodology works with external simulators 

or data generators, by simply recording the interaction between 

Simics and the external simulator. When reproducing the issue, the 

data exchange is simply replayed, without the need for the external 

simulator or data source. Such record–replay debugging is a very 

powerful paradigm for dealing with issues that appear in complex 

real-time and distributed systems with many things happening 

at once. Once a recording has been replayed in a Simics session, 

reverse debugging can be used within that session to quickly and 

efficiently diagnose the issue. 

TESTING FOR FAULTS AND RARE EVENTS 

Since the goal of CI is to ensure that code keeps working, it is 

important to test as many different scenarios as possible, and 

to keep doing so in an automated fashion every time a piece of 

code is changed and reintegrated. This is particularly tricky for 

code that handles faults and erroneous conditions in a system. 

Testing such code using hardware is difficult, and yet it is critical 

to ensuring system reliability and resiliency. Hardware test rigs for 

fault injection tend to be expensive, and testing is often destructive, 

which limits how much testing can realistically be performed. 

In a simulator, in contrast, injecting faults is very easy, since any 

part of the state can be accessed and changed. Thus, systematic, 

automatic, and reproducible testing of hardware fault handlers 

and system error recovery mechanisms can be made part of the 

CI testing. This practice will ensure that fault handling remains 

functional over time and will increase system quality. Often, the 

Figure 7. Workflow with Simics checkpoints 
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fault and error handling code in a system is the least tested, and 

a constant source of issues. Using simulation and injected faults, 

such code can be tested to a much higher extent than is possible 

using hardware.  

One example of the type of testing that simulation allows is the 

pulling of a board from a system, and checking that the system 

detects that the board is removed and rebalances the software 

load to the new system configuration. In the context of CI, doing so 

makes it possible to test that the platform and middleware perform 

as designed when integrated with the hardware and each other. 

Simulation also enables the introduction of varying environmental 

conditions as part of CI and testing. In the end, an embedded system 

is integrated into the world, and that integration needs to be tested—

not for ”faults” exactly, but rather for behavior that is expected from 

an uncooperative physical world. Testing how a system responds 

to various environmental conditions is an important use case for 

simulation, and one where simulation is being used extensively 

for physical systems already. For example, for a wireless network 

system such as the one shown in Figure 8, the integrated software 

behavior should be tested in the presence of weak signals and 

asymmetric reachability. Such testing is easy to perform using a 

model of the network, but difficult to perform in the real world. Each 

network link is available for change in the simulation, while trying 

to jam a real-world radio signal in a controlled way is very difficult. 

Simulation is often the only practical way to systematically and 

continuously perform testing of system scaling. For example, in 

sensor systems in the Internet of Things, you often need to have 

hundreds or even thousands of nodes in a single system to test the 

software and system behavior. In a simulated setting, it is possible 

to automatically create very large setups without having to spend 

the incredible amount of time it would take to set up, maintain, and 

reconfigure such a system in hardware form. Even when hardware 

is very cheap, configuring and deploying hundreds of separate 

hardware units is expensive. 

As shown in Figure 8, a simulation can be scaled from a small unit 

test network (1) to a small system test (2), and finally to a complete 

system including multiple types of nodes and a very large number 

of small sensor nodes (3). In Simics, each such configuration can 

be programmatically created by selecting the number of nodes of 

each type and their connectivity. 

Another example would be testing software for hardware that is in 

development or in prototype state; such hardware is usually very 

limited in quantity, and getting tens or hundreds of nodes for testing 

networked systems and distributed systems is just not possible. 

SIMULATION-BASED CI AND THE PRODUCT LIFECYCLE

The use of simulation to support CI means that it will be used during 

most of the product lifecycle. Figure 9 shows that CI (and thus CI 

using simulation) is applicable from platform development all the 

way to deployment and maintenance. 

In platform development, hardware is integrated with the OS 

driver stack and firmware, and middleware is integrated on top of 

the operating system. Once the platform is sufficiently stable to 

allow application development to begin, integration testing also 

includes applications. Applications integrate with the target OS 

and middleware, as well as with each other. The platform tests are 

also part of the integration testing even as applications are added; 

there might be several different sets of CI loops that start at various 

points in the system integration. 

CI means that integration testing is being pulled into earlier 

development phases—the whole point is to avoid waiting until the 

standard test phase to do integration. Indeed, as shown in Figure 

10, test and integration morphs from a separate phase to a parallel 

track of development, where tests are designed and executed from 

very early on in the software lifecycle. Testing and test development 

become part of the development effort, supporting the evolution of 

the system and its software over time. 
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Figure 8. Example of scaling up the simulated target system
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ACCELERATE DEVOPS WITH CONTINUOUS INTEGRATION AND SIMULATION

When using simulation for integration testing, the simulation setup 

is useful even after the first release of the integrated system has 

shipped. As the software is maintained with bug fixes, and new 

software is developed and software functionality expanded, CI is 

a key part of development practices. As the software continuously 

evolves, it has to be continuously integrated and tested so that 

existing functionality keeps working, and new functionality 

integrates correctly into the system.

In addition to development, simulation can also be used to support 

other organizations within the company dealing with deployment of 

the system, such as support and training departments. A simulation 

setup can be used to reproduce issues from the field, and once an 

issue is reproduced, the bug reporting workflow illustrated in Figure 

7 and discussed above can be applied. The simulation can also be 

used to support training of operators on a system.

CONCLUSION

CI is an important part of modern software engineering practice. 

By using CI, companies achieve higher quality and enable further 

enhancements, such as continuous delivery or continuous 

deployment, among other benefits. However, implementing CI for 

embedded systems can be a real challenge due to the dependency 

on particular processors, particular hardware, and particular 

environments. Using simulation for both the computer hardware 

and the environment surrounding an embedded system can 

enable CI for systems that seem “impossible” to automatically test. 

Simulation can also bring other benefits, such as faster feedback 

loops with better information to developers for issues discovered 

in testing, and expansion of testing to handle faults and difficult-to-

set-up configurations. 

Using Simics, many companies have successfully turned to 

simulation to augment their testing hardware setups and realize 

unprecedented development efficiencies. 
Figure 10. Continuous testing and integration 
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